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概要
微分を 1つ含む 2次の非線形項をもつ非線形シュレディンガー方程式の初期値問題について考
察する。本発表では、空間 1次元の場合に、Ozawa (1998) において導入された、ソボレフ空間
に原始関数の有界性を付加条件として課した空間を用いて得られる結果について報告する。

1 導入
本発表では、1次元ユークリッド空間において、次の非線形シュレディンガー方程式の初期値問題

について考える：i∂tu+
1

2
∂2xu = (λu+ µū)∂xu+ (c1u+ c2ū)∂xu, t > 0, x ∈ R,

u(0, x) = ϕ(x), x ∈ R.
(1.1)

ここで、i = √
−1, ∂t =

∂
∂t , ∂x = ∂

∂x であり、u = u(t, x)は複素数値の未知関数を表す。なお、ūは
uの複素共役を表す。また、ϕ = ϕ(x)は複素数値の初期値である。さらに、係数 λ, µ, c1, c2 ∈ Cは
(λ, µ, c1, c2) ̸= (0, 0, 0, 0)をみたすとする。
シュレディンガー方程式のもつ平滑化効果は強くない。そのため、非線形項に空間微分が含まれ
ると、初期値問題のソボレフ空間における適切性は明らかではない。実際、線形の場合であっても、
Mizohata [13]及び Takeuchi [17]によって、次の初期値問題{

i∂tu+ ∂2xu+ b∂xu = 0, t > 0, x ∈ R,
u(0, x) = ϕ(x), x ∈ R,

が L2(R)において適切であるためには、b = b(x)が

sup
x∈R

∣∣∣Re ∫ x

0

b(y) dy
∣∣∣ <∞.

をみたすことが必要十分であることが示されている。ここで、Re z は z の実部を表す。
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1.1 先行研究
次の形の非線形シュレディンガー方程式の初期値問題の先行研究について紹介する：i∂tu+

1

2
∂2xu = P (u, ū, ∂xu, ∂xu), t > 0, x ∈ R,

u(0, x) = ϕ(x), x ∈ R.
(1.2)

ここで、P : C4 → Cは定数項および線形項を含まない多項式とする。初期値問題 (1.2)の L2 に基
づくソボレフ空間Hs(R)における適切性の結果は P (u, ū, ∂xu, ∂xu)が微分を含む 2次の項であるか
どうかによって大きな違いがある。非線形項 P (u, ū, ∂xu, ∂xu)が微分を含む 2次の項をもたない場
合には、Kenig–Ponce–Vega [8]によって s ≥ 7

2 の場合に小さな初期値に対する時間局所適切性が証
明された。その後、Pornnopparath [16]によって sの条件が s ≥ 3

2 まで改良された。また、[8, 16]

における証明では、証明は逐次近似法に基づいている。これにより、Hs(R)における解写像は滑ら
かとなることも知られている。
その一方で、P (u, ū, ∂xu, ∂xu) が微分を含む 2 次の項である場合には、ソボレフ空間における
適切性の結果は非線形項の形によって大きく左右される。P (u, ū, ∂xu, ∂xu) = ū∂xu である場合に
は、 Grünrock [3] によって s ≥ 0 の場合に Hs(R) における時間大域適切性が証明された。また、
P (u, ū, ∂xu, ∂xu) = u∂xu である場合には、 Ito–Okamoto [7] によって s > 1

4 の場合に Hs(R) に
おける時間局所適切性が証明された。いずれの非線形項の場合も、証明は逐次近似法の一種であ
るフーリエ制限ノルム法が使用されているため、Hs(R) における解写像は滑らかとなる。しかし、
微分が ū ではなく u に作用する場合には状況が変化する。P (u, ū, ∂xu, ∂xu) = u∂xu の場合には、
Molinet–Saut–Tzvetkov [14] によって任意の s ∈ R に対して Hs(R) における解写像が C2 級にな
らないことが示された。なお、[14]と同様の計算を行うことで、(1.1)において (c1, c2) ̸= 0の場合に
も同様の結果が得られる。P (u, ū, ∂xu, ∂xu) = u∂xu の場合には、Molinet–Saut–Tzvetkov [14] に
よる結果の後に、Christ [2]によって任意の s ∈ Rに対して Hs(R)における解写像が不連続となる
ことが証明された。ただし、(1.1)において、λ, µが λ+ µ = 0をみたす場合には、エネルギー法と
Bona-Smith近似を適用することによって、s > 3

2 の場合に Hs(R)における時間局所適切性が得ら
れることが知られている。なお、この場合には、解写像は単に連続であることのみ分かる。

2 主結果 I：Hs(R)における解写像の滑らかさについて
1.1節において紹介した先行研究を踏まえると、(1.1)においては次のことが分かっていない。

(1) 係数 λ, µが λ+ µ = 0かつ (λ, µ) ̸= (0, 0)をみたす場合、s > 3
2 であれば (1.1)の Hs(R)に

おける解写像は連続になるが C2 級にならないことが分かっている。この場合に、解写像は連
続よりも滑らかになるか？

(2) 係数 λ, µが λ + µ ̸= 0をみたす場合、(1.1)の Hs(R)における解写像は連続になるが C2 級
にならないことが分かっている。また、(µ, c1, c2) = (0, 0, 0)の場合には解写像は連続にすら
ならないことが示されている。Hs(R)における解写像が存在すると仮定した場合、滑らかさ
はどうなるか？



これらの事柄に対して、今回は次の結果が得られた。

定理 2.1. 係数 λ, µは (λ, µ) ̸= (0, 0)をみたすとし、s > 3
2 とする。このとき、ある定数 C, c > 0と

T ∈ (0, 1]が存在し、任意の ρ ∈ (0, 1]に対し (1.1)の解の列 (u1,n), (u2,n) ⊂ C([0, T ];Hs(R))が存
在して次をみたす：

sup
n∈N

∥u1,n∥L∞([0,T ];Hs(R)) + sup
n∈N

∥u2,n∥L∞([0,T ];Hs(R)) ≤ Cρ, (2.1)

lim
n→∞

∥u1,n(0, ·)− u2,n(0, ·)∥Hs = 0, (2.2)

lim inf
n→∞

∥u1,n(t, ·)− u2,n(t, ·)∥Hs ≥ cρ2t (t ∈ [0, T ]). (2.3)

この結果より、(λ, µ) ̸= (0, 0)の場合には、たとえ sが十分大きい場合であっても、(1.1)のHs(R)
における解写像は Hs(R)の原点を中心とした任意の球上において一様連続とならないことが得られ
る。特に、λ+ µ = 0かつ (λ, µ) ̸= (0, 0)の場合には、Hs(R)における滑らかさは単に連続にしかな
らないことが分かり、λ+ µ ̸= 0の場合には、µ = c1 = c2 = 0の場合の Christ [2]による不連続性
の結果を除き、より詳細な結果が得られた。

注意 2.2. 非線形項が (∂xu)
2, (∂xu)

2 または |∂xu|2 の場合には、Hs(R)における解写像は sが十分
大きい場合に滑らかとなる。実際、非線形項が (∂xu)

2 の場合には、uと v := ∂xuの連立系を考える
ことで、Grünrock [3] の結果より、s ≥ 1 の場合に Hs(R) において解写像は滑らかとなる。また、
非線形項が (∂xu)

2 と |∂xu|2 の線形結合である場合には、Hayashi [4]及び Hayashi–Ozawa [5]にお
いて導入されたゲージ変換が適用できる。より詳細には、次の非線形シュレディンガー方程式

i∂tu+
1

2
∂2xu = d1(∂xu)

2 + d2|∂xu|2, t > 0, x ∈ R,

に対して、Λ(t, x) := 2d1u(t, x) + d2ū(t, x), v(t, x) := e−Λ∂xu(t, x)と定めることで、次の連立系が
得られる： 

i∂tu+
1

2
∂2xu = d1e

2Λv2 + d2e
Λ+Λ̄|v|2,

i∂tv +
1

2
∂2xv = |d2|2|eΛv|2v +

1

2
d2(2d̄1 + d2)|eΛv|2eΛ+Λ̄v̄.

したがって、逐次近似法を用いることによって、この連立系の初期値問題は十分に大きな sに対して
Hs(R)において時間局所適切であり、解写像は滑らかとなる。

3 証明の概略
定理 2.1の証明では、Koch–Tzvetkov [9]で導入された手法を使用する。この手法はエネルギー法

と近似解の構成を組み合わせた手法である。したがって、エネルギー法が適用できる λ+ µ̄ = 0の場
合には、[9]と同様の議論（ただし、近似解の構成は Li–Yu–Zhu [10]に基づくものを用いる）によっ
て定理 2.1を証明することができる。その一方で、λ+ µ̄ ̸= 0の場合には、(1.1)にエネルギー構造が
備わっていないため、Koch–Tzvetkov [9]の方法を直接適用することは困難である。また、この場合
には、たとえ sが十分大きい場合であっても、Hs(R)における時間局所解が一般に存在するかが分
かっていない。



これらの問題点を解決するために、今回は次の手順に沿って証明を行う。

3.1 ゲージ変換及び Xs(R)における解の存在
まず初めに、ゲージ変換を行う。ゲージ変換とは、Hayashi [4]及び Hayashi–Ozawa [5]において
導入された、方程式を変換する手法であり、エネルギー構造をもたない方程式をエネルギー構造をも
つ形に帰着することができる。初期値問題 (1.1)の解 uに対して、ゲージ変換は

Λ(t, x) := λ

∫ x

−∞
[u(t)] + µ

∫ x

−∞
[ū(t)]

を用いて
U(t, x) := e−Λu(t, x)

で定義される。ただし、 ∫ x

−∞
[f ] :=

∫ x

−∞
f(y) dy

である。このとき、U に関するシュレディンガー方程式は次のようになる：

i∂tU +
1

2
∂2xU = (c1 − µ)eΛU∂xU + c2e

Λ+2ΛU∂xU

+
1

2
µc2e

2ΛU3 +
(
µ̄(c1 − µ) + λµ̄)eΛ+Λ|U |2U

+
(
λ̄(c1 − µ) + µc2 +

1

2
(−λc2 + λµ+ µ2)

)
e2Λ|U |2U + λc2e

−Λ+3ΛU
3

+

∫ x

−∞

[
eΛ+Λ((−λ+ c1)µU∂yU + (−λc1 + |µ|2)U∂yU)

]
U

+

∫ x

−∞

[
(λ(−λ+ c1)µ+ µ(−λc1 + |µ|2))e2Λ+Λ|U |2U

+ (µ(−λ+ c1)µ+ λ(−λc1 + |µ|2))eΛ+2Λ̄|U |2U
]
U. (3.1)

この変換を正当化するためには、解の原始関数が well-definedかつ有界であることを保証する付加条
件が必要である。そのような条件の 1つは解が各時刻において積分可能なことであり、これは適切な
重み付きソボレフ空間における解を考えることで保証される。実際、重み付きソボレフ空間における
議論は Chihara [1] や Hayashi–Ozawa [6] において行われている。また、ゲージ変換は使用されて
いないが、Marzuola–Metcalfe–Tataru [11, 12]では、L1(R)に埋め込まれるような関数空間におい
て、(1.1)を含む準線形のシュレディンガー方程式の初期値問題の適切性が証明されている。一方で、
Ozawa [15]では、次で定義される空間 Xs(R)を導入し、ゲージ変換が正当化されている。

定義 3.1. s ≥ 0に対して、Xs(R)を次で定義する：

Xs(R) :=
{
ϕ ∈ Hs(R)

∣∣∣ sup
x∈R

∣∣∣∫ x

−∞
ϕ(y) dy

∣∣∣ <∞
}
,

∥ϕ∥Xs := ∥ϕ∥Hs + sup
x∈R

∣∣∣∫ x

−∞
ϕ(y) dy

∣∣∣.
ただし、原始関数は広義ルベーグ積分で定義される。



今回の証明では、解を構成する空間として Xs(R)を使用する。実際、定理 2.1を示す際に構成す
る初期値の列は、各 j = 1, 2に対して supn∈N ∥uj,n(0, ·)∥Xs < ∞をみたす一方で、j = 1, 2の一方
は limn→∞ ∥uj,n(0, ·)∥L1 = ∞となる。特に、Xs(R)は nに依存しない一様な時間において解を構
成する際に有効となる。
ゲージ変換を施して得られる方程式 (3.1)に対して、（Xs(R)において）エネルギー法を適用する

ことで Xs(R)における時間局所解の存在が得られる。

命題 3.2. s ≥ s0 >
3
2 とし、R > 0とする。このとき、∥ϕ∥Xs0 ≤ Rをみたす任意の ϕ ∈ Xs(R)に

対して、ある T = T (s0, R) ∈ (0, 1]と (1.1)の Xs における解 u ∈ C([0, T ];Xs(R))が存在する。

3.2 近似解の構成
次に、Xs(R)における解とその解に対する近似解を具体的に構成する。先述の通り、近似解の構

成は Li–Yu–Zhu [10] に基づくが、非線形項 (c1u + c2ū)∂xu の影響のため、Li–Yu–Zhu [10] を僅
かに修正した構成を行う。ここでは、その構成方法について紹介する。以下では、ρ ∈ (0, 1] とし、
f : R → Rを急減少関数とする。また、δ = δ(s) ∈ (0, 1)を後で決める定数とする。
自然数 nに対して ν := 2n と定める。また、初期値の高周波部分 hn,ρ と低周波部分 ln,ρ をそれぞ
れ次で定める：

hn,ρ(x) := ρν−(s+ 1
2 (1+δ))f(ν−(1+δ)x)eiνx, (3.2)

ln,ρ(x) := ρν−1f(ν−(1+δ)x)eiν
−1x. (3.3)

Koch–Tzvetkov [9]や Li–Yu–Zhu [10]とは異なり、初期値の低周波部分に弱い振動 eiν
−1x を加えて

いることに注意する。これは、初期値の列がXs(R)において有界となることを保証するためである。
また、u1,n,ρ と u2,n,ρ をそれぞれ u1,n,ρ|t=0 = hn,ρ, u2,n,ρ|t=0 = hn,ρ + ln,ρ をみたす (1.1)の解

とする。以下では、記号の簡略化のため、添え字の ρを省略する。すなわち、hn,ρ = hn, ln,ρ = ln,

u1,n,ρ = u1,n, u2,n,ρ = u2,n と書く。
解 u1,n, u2,n に対して、近似解 uap1,n, u

ap
2,n をそれぞれ次で定義する：

uap1,n(t, x) := hn(x)e
−i ν2

2 t = ρν−(s+ 1
2 (1+δ))f(ν−(1+δ)x)ei(νx−

ν2

2 t),

uap2,n := uap1,n + ln − it(λln + µln)∂xu
ap
1,n − ν−2(c1ln + c2ln)∂xu

ap
1,n.

ここで、uap2,n|t=0 = hn + ln − ν−2(c1ln + c2ln)∂xhn ̸= hn + ln であることに注意する。しかし、ν−2

が含まれているため、uap2,n|t=0 の 3項目は十分小さくなる。これにより、uap2,n は u2,n を十分に近似
するものとなっている。
続いて、初期値の評価と解と近似解の誤差評価について概要を紹介する。

補題 3.3. s ≥ 0, δ ∈ (0, 1)とし、hn, ln を (3.2)と (3.3)で定義したものとする。このとき、

∥hn∥Hs ∼ ρ∥f∥L2 , ∥ln∥Hs ≲ ρν−
1
2 (1−δ)∥f∥Hs+5 ,　

νs+
1
2 (3+δ)

∥∥∥∫ ·

−∞
[hn]

∥∥∥
L∞

+
∥∥∥∫ ·

−∞
[ln]

∥∥∥
L∞

≲ ρ(∥f∥L∞ + ∥∂xf∥L1)



が任意の ρ ∈ (0, 1], n≫ 1に対して成立する。

この補題から、(hn)および (ln)はXs(R)において有界である。特に、命題 3.2より次が成立する：

系 3.4. ある T0 = T0(s, δ, f) ∈ (0, 1] が存在し、任意の ρ ∈ (0, 1] と n ∈ N に対して、(1.1) の
Xs(R)における解 u1,n, u2,n は [0, T0]上において存在する。つまり、u1,n, u2,n ∈ C([0, T0];X

s(R))
である。

解と u1,n, u2,n とその近似解 uap1,n, u
ap
2,n の誤差評価を紹介する。証明はゲージ変換と（Xs(R)にお

ける）エネルギー法に基づく。

補題 3.5. s > 3
2 , δ ∈ (0,min{ 1

3 ,
2
3s−1}), ρ ∈ (0, 1],とする。このとき、ある T ∗ = T ∗(s, f) ∈ (0, T0]

と C = C(s, f) > 0が存在し、任意の n≫ 1と T ∈ (0, T ∗]に対して

∥u1,n − uap1,n∥L∞([0,T ];Xs(R)) + ∥u2,n − uap2,n∥L∞([0,T ];Xs(R)) ≤ C(ρ2T
3
2 + ν−δ)

が成立する。

3.3 定理 2.1の証明の概略
最後に、定理 2.1の証明の概略を述べる。次の補題が成立する。

補題 3.6. s ≥ 0, δ > 0とし、λ, µ ∈ Cとする。このとき、任意の急減少関数 ψ : R → Rと ν ≫ 1

に対して、次が成立する：

∥ψ(ν−(1+δ)x)eiνx(λeiν
−1x + µe−iν−1x)∥2Hs

x
∼ (|λ|2 + |µ|2)ν2s+(1+δ)∥ψ∥2L2 .

3.3節において構成した (u1,n)と (u2,n)が定理 2.1の条件 (2.1)–(2.3)をみたすことを示す。ここ
では、(2.3)のみ確認する。三角不等式と補題 3.5より、ある C = C(s, δ, f) > 0と任意の t ∈ (0, T ∗]

に対して、

lim inf
n→∞

∥u1,n(t, ·)− u2,n(t, ·)∥Hs ≥ lim inf
n→∞

∥uap1,n(t, ·)− uap2,n(t, ·)∥Hs − Cρ2t
3
2

が成立する。ここで、T ∗ は補題 3.5においてとったものである。初期値を構成する際に定めた f は
実数値の急減少関数であるため、三角不等式、補題 3.6において ψ = ρ2f2 としたもの、そして補題
3.3を用いることで

lim inf
n→∞

∥uap1,n(t, ·)− uap2,n(t, ·)∥Hs ≥ cρ2
√

|λ|2 + |µ|2t

がある c = c(s, δ, f) > 0 と任意の t ∈ (0, 1] に対して成立する。したがって、必要があれば T ∗ を
2C(T ∗)

1
2 ≤ c

√
|λ|2 + |µ|2 が成立するように小さくとることで

lim inf
n→∞

∥u1,n(t, ·)− u2,n(t, ·)∥Hs ≥ c

2
ρ2t

が任意の t ∈ [0, T ∗]に対して成立する。これより (2.3)が従う。



4 主結果 II：Xs(R)における適切性
ゲージ変換とストリッカーツ評価を組み合わせることで、Xs(R)における次の適切性の結果も得

られる。

定理 4.1. 係数 λ, µ, c1, c2 は c2 = 0, µ = c1 をみたすとする。また、s ≥ 0とする。このとき、(1.1)
は Xs(R)において時間局所適切である。より正確には、次が成立する：

(1) s > 1
2 , R > 0 とする。このとき、任意の ϕ ∈ BXs(R) := {ϕ ∈ Xs | ∥ϕ∥Xs ≤ R} に対し

て、ある T = T (s,R) > 0 と (1.1) の Hs(R) における解が存在し、u ∈ C([0, T ];Xs(R))
をみたす。また、そのような解は C([0, T ];Xs(R)) において一意である。さらに、解写像
BXs(R) → C([0, T ];Xs(R))はリプシッツ連続となる。

(2) 0 ≤ s ≤ 1
2 とする。このとき、任意の R > 0 に対し、ある T = T (s,R) > 0 が存在し、

解写像 S1
T : X1 ∩ BXs(R) → C([0, T ];X1(R)) はリプシッツ連続な写像 Ss

T : BXs(R) →
C([0, T ];Xs(R)) ∩ L4([0, T ];L∞(R))へ一意に拡張できる。また、任意の ϕ ∈ BXs(R)に対
して、Ss

T (ϕ)は Hs(R)における解である。

したがって、非線形項が ∂x(u
2)と ∂x(|u|2)の線形結合で表される場合には、初期値に原始関数の

有界性を課すことで、s ≥ 0の場合に適切性を得ることができる。なお、Ozawa [15]では、非線形項
が ∂x(u

2)と ū∂xuの線形結合で表される場合に、s ≥ 1のときに Xs(R)における時間局所適切性が
示されている。また、非線形項の係数にさらに条件を課すと次も成立する。

定理 4.2. c2 = 0, µ = c1 とし、s ≥ 0とする。また、λ+ µ̄ = 0とする。このとき、(1.1)はXs(R)
において時間大域的適切である。

この場合には、Hs(R)には時間大域適切性も得られる。

定理 4.3. 係数 λ, µ, c1, c2 は定理4.2と同じ条件をみたすものとする。また、s ≥ 1 とする。この
とき、(1.1) は Hs(R) において時間大域適切である。より正確には、任意の ϕ ∈ Hs と T > 0

に対して、(1.1) の Hs(R) における解 u ∈ C([0, T ];Hs(R)) が存在する。また、そのような解は
{u ∈ C([0, T ];Hs(R)) | ∂xu ∈ L1([0, T ];L∞(R))} において一意である。さらに、解写像は連続と
なる。
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